2015/7/13 下午12:06:19 星期一
当前位置: 主页 > 厉兵秣马 >

深度长文:表面繁荣之下,人工智能的发展已陷入困境
时间:2019-05-31 12:57

编者按:《连线》杂志在其最近发布的12月刊上,以封面故事的形式报道了人工智能的发展状况。现在,深度学习面临着无法进行推理的困境,这也就意味着,它无法让机器具备像人一样的智能。但是真正的推理在机器中是什么样子的呢?如果深度学习不能帮助我们达到目的,那什么可以呢?文章作者为克莱夫·汤普森(@pomeranian99),原标题为“How to Teach Artificial Intelligence Some Common Sense”。

深度长文:表面繁荣之下,人工智能的发展已陷入困境

一、

五年前,总部位于伦敦的人工智能公司DeepMind的程序员,兴奋地看着人工智能自学玩一款经典的街机游戏。他们在一项看似“异想天开”的任务上使用了当今最热门的技术——深度学习——掌握了Breakout。

这是一款雅达利(Atari)开发的游戏,在游戏中,你需要用移动下方的平板,把球弹起,然后把上方的所有砖块都打消失。

深度长文:表面繁荣之下,人工智能的发展已陷入困境

深度学习,是机器进行自我教育的一种方式;你给人工智能提供大量的数据,它会自己识别模式。在这个游戏中,数据就是屏幕上的活动——代表砖块、球和玩家平板的块状像素。

DeepMind的人工智能,一个由分层算法组成的神经网络,并不知道任何关于Breakout的工作原理、规则、目标,甚至如何发挥它都不清楚。编码器只是让神经网络检查每个动作的结果,每次球的弹起轨迹。这会导致什么?

事实证明,它会掌握一些令人印象深刻的技能。在最初的几场游戏中,人工智能只是控制下方的平板四处乱晃。但是玩了几百次之后,它已经开始准确地将球弹起了。到了第600场比赛时,神经网络使用了一种专业的人类Breakout游戏玩家使用的动作,凿穿整排砖块,让球沿着墙顶不停跳跃。

“这对我们来说,是一个很大的惊喜,”DeepMind的首席执行官德米斯·哈萨比斯(Demis Hassabis)当时说道。“这一策略完全来自底层系统。”

人工智能,已经显示出它能够像人类一样进行异常微妙的思考,掌握Breakout背后的内在概念。因为神经网络松散地反映了人脑的结构,所以从理论上说,它们应该在某些方面模仿我们自己的认知方式。这一刻似乎证明了这个理论是正确的。

去年,位于旧金山的一家人工智能公司Vicorance的计算机科学家,提供了一个有趣的现实检验。他们采用了一种类似DeepMind所用的人工智能,并在Breakout上进行了训练。

结果很棒。但随后,他们稍微调整了游戏的布局。在一次迭代中,他们将平板提得更高了;另一次迭代中,他们在上方增加了一个牢不可破的区域。

人类玩家可以快速适应这些变化,但神经网络却不能。 这个看起来很聪明的人工智能,只能打出它花了数百场比赛掌握的Breakout的方法。 它不能应对新变化。

“我们人类不仅仅是模式识别器,”Vicarious的共同创始人之一、计算机科学家迪利普·乔治(Dileep George)告诉我。“我们也在为我们看到的东西建立模型。这些是因果模型——有我们对因果关系的理解。”

人类能够推理,也会对我们周围的世界进行逻辑推理,我们有大量的常识知识来帮助我们发现新的情况。当我们看到一款与我们刚刚玩的游戏略有不同的Breakout游戏时,我们会意识到,它可能有着大致相同的规则和目标。

但另一方面,神经网络对Breakout一无所知。它所能做的就是遵循这个模式。当模式改变时,它无能为力。

深度学习是人工智能的主宰。在它成为主流以来的六年里,它已经成为帮助机器感知和识别周围世界的主要方式。

它为Alexa的语音识别、Waymo的自动驾驶汽车和谷歌的即时翻译提供了动力。从某些方面来说,Uber的网络也是一个巨大的优化问题,它利用机器学习来找出乘客需要汽车的地方。中国科技巨头百度,有2000多名工程师在神经网络人工智能上努力工作。

多年来,深度学习看上去越来越好,不可阻挡地让机器拥有像人一样流畅、灵活的智力。

但是一些人认为,深度学习正在面临困境。他们说,单凭这一点,它永远不会产生广义上的智能,因为真正像人类一样的智能,不仅仅是模式识别。