2015/7/13 下午12:06:19 星期一
当前位置: 主页 > 厉兵秣马 >

解码“认知之轮”365体育::AI与人类的终极一战
时间:2019-05-31 19:34

解码“认知之轮”:AI与人类的终极一战

时间:11-19 07:33 阅读:4869次 转载来源:虎嗅网

今天周一,跟大家聊点假装深沉的话题。

现在我们在讨论人工智能的时候,大都把卷积神经网络奉为圭臬。因为这种算法,号称是“平移不变的人工神经网络”,说人话就是人脑的高仿。

通过模拟人类脑皮层神经元的网状结构,能够提取和识别各种物体的特征,永不停机地进行学习,比最乖的人类小孩还要让人省心。

而且一旦训练好了,就能比人类做得更快更好。拳打九段棋手、脚踢世界冠军,是毫无问题的。

因此,卷积神经网络正在被大量地应用于各种AI系统上。似乎只要假以时日,就该“封神”了。

但,这是不可能的。

尽管看起来,365体育投注,这一波AI热正在让人类处于被广泛替代的危险境地,不过距离机器超越人类的那一天,其实还是非常遥远。

为啥呢?

说来你可能不信,关键原因还是在卷积神经网络身上。

送分题都不会,你怎么回事小老弟?

上古时代,流传着这样一道送分题:要把大象装冰箱,总共分几步?

如果让一个人类小孩来回答,他会分分钟告诉你标准答案——把冰箱门打开,把大象塞进去,把冰箱门合上。

但是如果让一个卷积神经网络机器人(我们就称呼它为“小卷”吧)来挑战呢?

它会先假设,某个叫做“塞”的动作能够将大象转移到冰箱里。于是立即行动,却发现怎么也塞不进去。可怜的“小卷”,遗漏了物理体积不匹配这个重要条件。

我们给它升级一下,让“小卷二号”能够识别大象和冰箱的个体特征对任务有何影响。它在任务开始前努力推演,正当它算出大象的皮肤颜色对完成任务不会有任何帮助,准备推算下一个特征的时候,大象已经不耐烦地跑走了,任务失败。

我们再升级一下,教它学会分辨哪些因素与任务是相关的还是无关的,“小卷三号”诞生了。但是,它一屁股坐冰箱旁边不动了,掏出一个小本本,开始记录千千万万个被确定与任务无关的东西,直到时间的尽头……

这么看起来,“小卷”们好笨呀,别说和人比了,和阿尔法狗这些前辈们比差距也很大啊!

这背后,其实隐藏着一个令AI科学家们困扰多年的变态难题——“框架问题”。

什么是框架问题

想要搞懂什么是“框架问题”,先解释一下卷积神经网络是怎么工作的。

前面我们提到过,这种深度学习的神经网络是在模拟人类神经元系统的操作方式。不同算法都只为了完成一个目标:就是像人一样,忽略该忽略的信息,并在遇到重大的反常情况是保持足够的警觉。

如何能够在集中注意力的同时获得合理忽略的能力呢?

科学家们只能将一切变化多端、无穷无尽的生活经验压缩并生成一个“框架”,其中包含了一个内容丰富、细节详实的脚本纲要,所有现实世界的问题及事物之间的联系都囊括其中。

当机器想要解决一个问题时,就可以在“框架”中对某些特征加以注意,对那些偏移框架的重大误差保持警觉。

如果这个神经网络框架被建构得足够好、足够庞大,它可以展现出无穷大的能力。比如DeepMind用5000台TPU培育出来的AlphaZero,无需其他干预,就能在4个小时之内成为世界象棋冠军。

但是,在某些人类日常生活中需要用到的反应模型中,卷积神经网络的智商却和昆虫差不多。

D. Dennett在他的论文《AI的框架问题》中举了一个例子:制作午夜快餐。

一个肥宅半夜饿醒,想给自己做点吃的,于是他想到了冰箱里面有些剩下的鸡肉片,面包,还有一瓶啤酒。于是他很快就想出了一个完美的计划:查看冰箱,拿出需要的材料,做一份三明治,就着啤酒,美滋滋。哦,还需要带上刀、盘子和酒杯。

人类之所以能顺利完成这项任务,是因为我们已经了解了大量的知识。包括鸡肉加在面包里不会掉下来(摩擦力),啤酒如何倒入杯子(重力),甚至是左手拿着面包就不能再用来拿刀了。

这些“知识”或经验是人类“生而知之”的,我们自己或许都不知道是如何学会这些事情的,却能让我们不需要思考就轻松搞定一个又一个基本生活问题。

但对于任何事情都要从头学起的AI来说,如果这些大量而平凡的经验不能引起足够的注意,它就根本不可能完成这些不断出现的新任务。