2015/7/13 下午12:06:19 星期一
当前位置: 主页 > 周而复始 >

贾扬清AI大会旧金山站演365体育:讲:AI如何重塑传统软件行业
时间:2019-05-31 18:06

摘要:贾扬清AI大会旧金山站演讲:AI如何重塑传统软件行业

AI正在重塑人类社会的方方面面,例如研发新的药物,改善人们的生活习惯等。那么在这个崭新的时代,AI是如何重塑软件工程这个行业的呢?

本文基于Caffe的创始人、TensorFlow核心作者之一贾扬清在O'Reilly和Intel共同举办的AI Conference旧金山站所做的演讲《在AI时代重新思考软件工程》,通过揭秘传统软件工程的痛点,他希望向各位分享自己对人工智能时代,软件工程行业发展的思考。

长期以来,我们一直把分辨某个物体、颜色、形状的能力想成理所当然。什么意思呢?比如,当文摘菌提道“斩男色”的时候,相信很多小姐姐都心领神会,但是你如何给不知道这个颜色的ta,或者计算机描述/形容“斩男色”?

注:斩男色,传说涂上这个颜色的口红可以就能天下无敌,撩弟无数,斩获所有直男的心。

在图像识别和处理领域,传统的软件工程是通过设计规则(rules),也就是使用硬编码来描述物体特征,来研究计算机视觉的问题。在深度学习之前,方向梯度直方图(histogram of gradients 简称HOG)火遍了大江南北。

什么是HOG?简单的说,HOG试图在图像的局部收集统计数据,或者可以理解为,它试图找到物体各个方向上的边界。比如,当你认真仔细看箭头下的图,(希望)你可以看出类似汽车的物体轮廓。

是不是仿佛回到了小时候体检看色盲卡?再来一张,这张是不是好多了?

因此,传统软件工程需要告诉电脑,规则是什么,或者特征是什么,并一步一步‘告诉’电脑该怎么做。可想而知,这种设计本身限制了计算机视觉的进一步发展。

从逻辑编程到自调适模型:从授之以鱼到授之以data

传统图片识别技术错误率在26%停滞不前,急坏了众多科学家、学者、研究人员。

这时,一位名叫Alex Krizhevsky的小哥哥,提出用一种更抽象的方式写模块,设计出了我们今天称为‘卷积神经网络‘的模型。并用大量的数据构建和训练它,实现了图像识别从传统的逻辑编程到建模的转变。

这种方法的效果惊天地泣鬼神,和传统图片识别技术相比,在准确性方面实现了飞越。AlexNet在2012年ImageNet中以15%的错误率取得前5的好成绩。

AlexNet由5个卷积层和3个全连接层,650,000个神经元以及60,000,000个参数构成。其中,卷积层扮演着抽象和提取特征的角色。

传统图像识别的方法,是将人为指定的、通过HOG提取出来的特征再放入分类器中,进行识别。而AlexNet实现了通过卷积层自主学习图片特征,并通过全连接层输出概率,确定分类的‘一条龙’服务。真的非常优秀了!

reference:

有意思的是,AlexNet还有生物后端的支持。研究发现,在我们的视觉皮层中,神经元会进行分层推断。信息从一层传递到下一层,再到下一层,从而让大脑提取越来越复杂的信息。

数据金矿

传统的方式是如何编写软件呢?我们编写软件时,会把源代码放入编译器中,编译器会将源代码转换成计算机能解读、运行的低阶机器语言。

而在人工智能领域,我们写的程序或者说模型已经和传统软件工程编译不同了。它不再是一组逻辑,而是会根据不同的训练数据和目标数据,得到不同的程序和模型。这些模型可以推导出一个通用的规则,然后使用大量的数据和计算来得到精确的结果。

举个例子,对于大约有一百二十万张图片的数据集来说,传统的方式处理这些编译的一个挑战是,它需要进行大约百万万亿次的计算(1 exaflop)来训练一个图像网络模型。

这是什么概念呢?如果让每个伦敦人每秒都做一个浮点运算的话,需要大约四千年的时间来训练这个模型。

其实我们已经意识到,人工智能的计算在某种程度上是非常野蛮的。特别是在卷积神经网络,或者叠加的神经网络,我们需要做大量的浮点运算(float operations)。

因此,在几年前,我们就开始建立和研发更高效的硬件。而且,我们还建立起了数据中心、规模集群或环境(scale clusters or environment)来进行计算。

与此同时,我们还看到了科学计算算法的回归,比如那些传统的用来预测天气的方法。