2015/7/13 下午12:06:19 星期一
当前位置: 主页 > 周而复始 >

没有压力的“压力测试”:LSTM神经网络是如何预测焦虑的?
时间:2019-05-30 15:01

没有压力的“压力测试”:LSTM神经网络是如何预测焦虑的?

时间:今天 7小时前 阅读:2707次 转载来源:钛媒体

图片来源@视觉中国

图片来源@视觉中国

文|脑极体

身为现代都市人,如果没有一点“焦虑感”,简直都不好意思跟人打招呼。

什么,你竟然每天都乐观积极正能量,是不是家里有矿?佛系生活,跟不思进取有区别吗?

适当焦虑,确实有助于人们努力奋斗、实现自我,但长时间地沉浸在焦虑之中,却有可能导致身体的炎性,加快衰老进程,更严重的,带来抑郁症和其他健康问题就悲剧了。

那么,有没有一个可以检测焦虑值的“温度计”,能让人在该紧张的时候适度保持压力,在健康临界点及时提醒放松身心呢?

在5月的IEEE生物医学和健康信息学国际会议(BHI)上,MIT的科学家利用LSTM(长期记忆神经网络模型)来准确预测人的压力水平。算法真的能帮助人类生活的“张弛有度”吗?

LSTM:没有压力的压力预测

面对情绪不佳的亲友,我们(包括专业的心理咨询师)往往都会建议或陪伴他们改变一下以往的生活方式,比如增加户外运动、辅助睡眠等等。

但压力的出现往往是一个复杂而动态的过程,究竟什么时候需要去改变自己的行为,就需要准确地预测压力值来提供支持了。

以往这个工作只能通过与心理医生交流,做繁多而繁琐的测试题等来完成,显然,麻烦的流程和较高的费用,简直是在解决问题之前又创造了新的压力,总会劝退不少人。能不能以一种不引人注意的、保护个人隐私的方式来收集相关数据呢?

麻省理工学院的媒体实验室就联合NEC公司和三星电子,以可穿戴传感器为媒介,借助机器学习的能力来帮助实现更合理的压力测试。

首先,研究人员调查了美国142名大学生的数据,要求他们自行报告自己各项活动的时间,以及持续的周期。比如睡眠、课外活动、运动等等。有的还会被问到睡前是否参与了一些活动,摄入咖啡因、有积极或消极的社交行为等,在连续报告了8天之后,研究人员总共获得了1231个序列的数据。

除了上述主观数据之外,研究人员还在过程中引入了一系列客观特征。

比如要求参与者佩戴一种AF-phtiva Q传感器,可以每天24小时不间断地测量与情绪和压力有关的生理活动特征,比如交感神经活动、体力活动、睡眠模式、昼夜节律、应激反应等等。

另外,智能手机也起到了不容忽视的作用,当然,不是那种敏感的数据。一方面,通过手机上的电话、SNS通讯时间、类型和持续长度,以及屏幕打开关闭的时间,研究人员就可以掌握到两个关键信息:屏幕光线(可预测睡眠质量),以及社会交流程度(与情绪复原能力有关)。

另外,手机应用还能记录参与者一天当中的GPS信息,以及他们是在使用WiFi网络还是蜂窝数据,这有助于研究人员了解参与者的总行程,以及在校园内的时间量。而有研究表明,人的移动模式与心理健康状况密切相关。

在这些数据的基础上,科学家们建立了一个通用的实时机器学习模型,来对压力进行预测。

由于长期短期记忆网络(LSTM)具有学习长期行为的能力,可以很好地应对序列学习上的梯度消失等问题,,基于深度学习框架keras和Python,实现了整个算法。

当然,LSTM的价值也不是糊里糊涂就体现出来的。为了与其进行比较,研究人员还使用了支持向量机SVM和逻辑回归LR等方法,它们在以前的情绪预测研究中都被广泛证明拥有良好的效果。但由于不能直接利用时间序列数据,它们还是败给了带有时间信息的LSTM预测模型。

经过多天的循环验证,研究结果证明,只需要使用338个采集到的客观特征,就能够很好地预测出第二天的压力水平。

再接再厉,研究人员又使用SVM、LR和LSTM三个模型同时预测1-7天的压力状况,数据显示,时间越长,LSTM的预测精度就越高。4天的数据预测效果比仅使用1天的数据要好得多。达到了83.6%的准确率。